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ADDENDUM 

Diffusion and trapping of excitations in disordered systems 
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Department of Chemical Engineering and Materials Science, University of Minnesota, 
Minneapolis, M N  55455, USA 

Received 24 April 1984 

Abstract. We investigate diffusion and trapping of excitations in percolation systems by 
an effective medium approximation. We calculate Po([) ,  the probability of being at  the 
origin at time 1, on the percolation cluster at the percolation threshold pc ,  S,(t), the mean 
number of distinct sites visited after time 1, at and above pc  and N (  I) ,  the survival probability 
after time 1. All of our findings are completely consistent with the previously proposed 
relations by Rammal and Toulouse. We also consider a more general problem in which 
the waiting time distribution of an associated continuous-time random walk is long-tailed 
and propose generalisations of the Rammal-Toulouse conjectures. Our results indicate 
that the scaling properties of these quantities are sensitive to the details of the system. 

Transport processes in disordered systems have attracted much attention in recent 
years. For example, conduction processes in amorphous materials have been much 
studied (see e.g. Pfister and Scher 1978 and references therein). In such processes, 
basic quantities such as AC and DC conductivities are influenced by the nature of the 
disordered system in which transport processes take place. Most of the theoretical 
studies have concentrated on models based on regular lattices. However, there has 
recently been a good deal of interest in fractal structures, chiefly due to their scale- 
invariance property in contrast to translationally invariant systems such as Bravais 
lattices. The largest percolation cluster at the percolation threshold p E ,  linear and 
branched polymers and epoxy resins (Alexander et a1 1983) are but a few examples. 
Thus fractal structures are expected to fill the gap between periodic structures and 
completely disordered systems. Therefore it is of considerable interest to study dynami- 
cal structures on fractals. 

Rammal and Toulouse (1983) recently studied many physical problems on fractal 
structures. In particular, they studied random walks on such structures and proposed 
several relations concerning the statistics of random walks. The probability Po( t )  that 
a random walker will find itself at the origin of the random walk at time t was proposed 
to be given by (see also Alexander and Orbach 1982) 

where d, is the fracton or spectral dimension of the fractal (Alexander and Orbach 
1982). The spectral dimension is given by d, = 2df/d,, where df is the fractal dimension 
of the fractal and d, is the fractal dimension of the random walk on the fractal. 
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Another quantity of interest is the mean number of distinct sites visited, S,(t) at time 
t (after N steps) which, for a fractal, was conjectured to be given by (Rammal and 
Toulouse 1983) 

S,( t )  - r i d s .  ( 2 )  

Numerical simulations of random walks on fractals appear to confirm these relations : 
see Blumen er a1 (1983) and Angles d'Auriac et a1 (1983). Scaling concepts have also 
been used to support equations (1) and ( 2 )  (Pandey and Stauffer 1983, Webman 1984). 
If a fraction c of sites of the fractal are traps, one is also interested in quantities such 
as N ( t ) ,  the probability that a random walker is not yet trapped at time t. 

The most prominent and physically appealing fractal system is perhaps the largest 
percolation cluster at p c .  In this paper we study random walks on the percolation 
clusters at pc  by an effective medium approximation (EMA). We calculate quantities 
such as Po( t )  and S,( t )  by the EMA and find that the EMA predictions are consistent 
with equations (1) and ( 2 )  and thus provide relatively firm theoretical support for 
equations (1) and ( 2 ) .  The governing equation for the random walks is the linear 
master equation 

where Pi(?) is the probability of being at site i at time t and W, the transition rate 
between sites i and j ;  { i }  denotes the set of nearest-neighbour sites of i. An EMA for 
random walks governed by the linear master equation (3) has been developed by several 
authors (Webman 1981, Haus et a1 1982, Sahimi et a1 1983). We follow these authors 
and develop an EMA which enables us to calculate the quantities of interest. 

In the simplest EMA (the single-bond EMA) one replaces the random transition rates 
of all bonds but one with an effective transition rate W,. It turns out that it is more 
convenient to work in the Laplace transform space. The random transition rate of the 
single bond causes a perturbation in the probability gradient across the single bond. 
One insists that the average value of this perturbation vanishes, the average being 
taken with respect to the single-bond transition rate probability density function f( W). 
The governing equation for W, is given by 

where A is the Laplace transform variable conjugate to t and E = A /  W,,,(A). Here y 
is a Green function given by y = 2 1 2  - AG(A)/ W,, where Z is the coordination number 
of the lattice. We restrict our attention to a d-dimensional simple cubic lattice for which 

We first consider the simplest case in which the random transition rates have the 
probability density 

( 6 )  f( w) = ( 1 - PV+( W) + p6(  w - 1 ). 

Near the percolation threshold p c  one has E = A /  W, << 1. We thus expand G(A) 
in powers of E ; we obtain 

G(A)= - ; z ~ ~ ) + ( A , / A ) ( A /  w,(A) )~~  +. . . , (7) 
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where AI is a constant given by 

A ,  = cosec &.ir(d -2)/[2dr(d/2).rrd/2-1], (8) 

and Z,(d) is a generalised Watson integral 

Equation (7) is valid for 2 <  d <4. We now substitute equations (6) and (7) into (4) 
to find W,,,(A). The result is given by 

W,(A) = [d/2(d - 1)]{ p - p c  +[( p - p,)’ +2A (d  - l)Iw(d)/d2]”2} +. . . . (10) 

The Laplace transform ko(A) of Po( t )  is given by k o ( A )  = -G(A)/ W,,,. We thus obtain 

k o ( A )  ==[ 2 Wm 1 + A ’ ( L ) d ’ 2 [ ( p - p c ) 2 + A Z w ( d ) / 2 d W , , , - 1 ~ z ]  d Wm +. . . . 

Therefore at p = p c  and to leading order in A we have Fo(A) - A-’”,  which means that 

Po( t )  - t - ” 2 ,  2 < d < 4 .  (12) 

By a similar method we find that 

G(A) = -A2(A/ W,, , ) (d’2)-1,  1 < d < 2 ,  

where A2 is a constant. By following the same line of derivation as above we find that 
F0(A) - A-2/(d+2), which means that 

po( t )  - f - d l ( d + 2 )  1 < d < 2 .  (14) 

We now calculate the mean number of distinct sites visited s N ( t )  at time t. For a 
translationally invariant lattice S N ( ~ ) ,  the Laplace transform of s N ( t ) ,  is related to 
ko(A) by (Montroll and Weiss 1965) 

j N ( A )  = [A2ko(A)]-’ .  (1 5) 

The largest percolation cluster at p c  is a fractal object and lacks translational invariance. 
In this case equation (15) does not hol t  for large A (short times). Hughes et a1 (1983) 
have derived a general expression for S,(A) for such a case (see their equation (21)). 
However, we may expect that as t + cc the probability of being at the origin at time t 
will no longer depend on the origin of the walk, in which case equation ( 1  5) should 
hold as A + O  ( t + c o ) .  We thus obtain 

Above the percolation threshold p c  one has to distinguish between two regimes. 
At short times, i.e. when the span of the walk R , = ( ( R 2 ( t ) ) ) 1 / 2  is smaller than the 
percolation correlation length zp, where ( R2( t ) )  is the mean-squared displacement of 
the walk, the random walk is not diffusive and is characterised by the fractal dimension 
d,. In this regime we expect that equations (12), (14), (16) and (17) hold. However, 
at much longer times when R,>>tp,  the random walk is diffusive and we recover the 
results for periodic lattices, e.g. P o ( t )  - at all d and s N ( t )  - bt for d 3 3. A 
characteristic time T can be defined such that for t >> 7 the random walk is diffusive, 
while for t<< T the random walk is characterised by the fractal dimension d,. It can 
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be shown that the EMA predicts that 

The prefactors a and b do depend on p.  For example, it is straightforward to show 
that for t >> T and p > p c  the EMA yields 

S N  ( t )  - ( P - P c )  t, 2 < d < 4 .  (21) 

The spectral dimension d, of percolation networks has recently been calculated by an 
EMA. This was done by calculating the density of states N ( w )  for percolation networks 
at pc .  One should have N ( w )  - 0 ’ 5 - l ~  where w is the frequency. For 1 < d < 2 one 
has (Derrida et al 1984) 

d, = 2d / ( d  + 2), 1 < d < 2 ,  (22) 

d ,=  I ,  2 < d < 4 .  (23) 

whereas for 2 <  d < 4  one obtains (Sahimi 1984, Derrida er a1 1984) 

Equations (12), (14), (16) and (17) together with (22) and (23) are completely 
consistent with equations ( 1 )  and (2) that have been proposed by Rammal and Toulouse 
(1983) for random walks on fractals. Forp > p c  2nd t >> 7, Webman (1984) has suggested 
that 

S N  ( t )  - Tids-’ ?, d a 3 ,  (24) 

which is again consistent with our result, equation (2 ) ) .  On the other hand our results 
can also be interpreted as an EMA prediction of d, if one accepts the Rammal-Toulouse 
relations. 

If a concentration c of the sites of a lattice are trapping sites, then the probability 
N ( t )  that a random walker is not yet trapped at time t is given by (Weiss and Rubin 
1983) 

N (  t )  - 1 - cS,( t )  -- exp[ - c S ,  ( t ) ] ,  (25) 
where it has been assumed that cSN(  t )  << 1. Equation (25) together with (1 6) and (1  7) 
provide means of calculating N ( t )  by an EMA. In particular, for three-dimensional 
systems the EMA predicts that N(t)-exp(-B,tl”) where B ,  is a constant. Klafter er 
a[ (1984) have shown that for a fractal structure 

N(t)-exp(-B,t”), (26) 
where a = d,/(d,+2) and B, is a constant. For regular lattices one may use (26) but 
with (Kayser and Hubbard 1983) cy = d/(d +2)  and another constant B,. Equation 
(26) predicts that N(t)-exp(-B,to4), if we take d , = j  for percolation clusters. For 
three-dimensional regular lattices one obtains N (  t )  - exp(-B,t0.6). The EMA prediction 
lies just in between these two results which is a quite satisfactory result. Moreover, 
Klafter et a1 (1984) have shown, by numerical simulation, that the exponent a = 
d,/(d, + 2) cannot be observed experimentally and one should observe larger values of 
a if d, # 1. These observations indicate that the EMA should provide a highly accurate 
expression for N ( t )  at d = 3. We remark that equations ( 1 )  and (2) have been proposed 
for random walks that take place on the largest percolation cluster. Angles d’Auriac 
and Rammal (1983) have shown that if the random walk takes place on all clusters, 



Excitations in disordered systems 257 1 

the resulting equations for Po( t )  and S,( t )  will be different. However, the EMA cannot 
explicitly distinguish between clusters of different sizes and thus it cannot be used for 
this case. 

Other quantities of interest can be calculated by the above technique. For example, 
it can be shown that MO(?), the mean number of visits to the origin after time f ,  is 
given by 

AI,(?)- t ' - t d s ,  (27) 
so that if we take d s = $  for percolation clusters, we find MO(?)- ? ' I 3 .  This result is 
valid if the random walk takes place on the largest percolation cluster at p c  or any 
other fractal. If the random walk is performed over all clusters, equation (27) must 
be modified, a matter to be discussed elsewhere. 

We now turn to a more general situation in which the distribution of transition 
rates is given by 

(28) 
where h ( W )  has no generalised function component at the origin. It can be shown 
that (Sahimi et al 1983) if 

f( W) = (1 -PP+( W) +Ph(W),  

1 
h- , = lom h ( W) d W (29) 

is finite, the predictions of the EMA do not change qualitatively. However, if h-, =a, 
the critical exponents depend heavily on the behaviour of h( W) as W + 0. For example, 
if we take h( W) - C W-P,  as W + 0 and 0 < /3 < 1, the results will be completely different 
from the results obtained so far. By using the exact correspondence between master 
equations, generalised master equations (Klafter and Silbey 1980) and continuous-time 
random walks (CTRW) (Kenkre et al 1973) one can express the results in terms of $ ( t ) ,  
the waiting time distribution of the associated CTRW. For d > 2 the EMA predicts that 
$ ( f )  is given by 

9 (30) 
which is a long-tailed distribution, i.e. the mean waiting time ( t )  is infinite. By using 
the same analysis as before we obtain the following result (within the EMA) 

+ ( t )  - t ( 2 P - 3 ) / ( 2 - P )  

, 2 < d < 4 .  (31) 

(32) 

sN( t )  - t " - P ) 1 2 ( 2 - P )  

SN ( f ) - f 
If we compare equations (17), (30) and (31), we see that if in general $ ( t ) -  t - ' - ' ,  then 

where 0 < 6 < 1. Equation (32) can be viewed as a generalisation of the conjecture of 
Rammal and Toulouse (1983). Equation (32) also means that ( R 2 (  t ) )  is given by 

( R 2 ( t ) )  - t2'/ld-, (33) 
so that the random walk process is sensitive to the parameter 6. 

In summary, we have used the effective medium approximation to investigate 
diffusion and trapping of excitations on percolation clusters. We have calculated Po( t ) ,  
the probability of being at the origin at time t, at the percolation threshold pc ,  S , ( t ) ,  
the mean number of distinct sites visited after time t, both at and above pc ,  and N ( t ) ,  
the survival probability if a fraction c of sites are traps. Our results are completely 
consistent with the previously proposed relations by Rammal and Toulouse ( 1983). 
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We have also investigated a more general random walk problem in which the waiting 
time distribution of the associated continuous-time random walk is long-tailed. We 
have proposed a generalisation of the Rammal and Toulouse (1983) relations for this 
case. 

This work was supported in part by the US Department of Energy. 
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